Many plant cells exhibit polarity, revealed by asymmetric localization of specific proteins within each cell.1,2,3,4,5,6 Polarity is typically coordinated between cells across a tissue, raising the question of how coordination is achieved. One hypothesis is that mechanical stresses provide cues.7 This idea gains support from experiments in which cotyledons were mechanically stretched transversely to their midline.8 These previously published results showed that without applied tension, the stomatal lineage cell polarity marker, BREVIS RADIX-LIKE 2 (BRXL2), exhibited no significant excess in the transverse orientation. By contrast, 7 h after stretching, BRXL2 polarity distribution exhibited transverse excess, aligned with the stretch direction. These stretching experiments involved statistical comparisons between snapshots of stretched and unstretched cotyledons, with different specimens being imaged in each case.8 Here, we image the same cotyledon before and after stretching and find no evidence for reorientation of polarity. Instead, statistical analysis shows that cotyledons contain a pre-existing transverse excess in BRXL2 polarity orientation that is not significantly modified by applied tension. The transverse excess reflects BRLX2 being preferentially localized toward the medial side of the cell, nearer to the cotyledon midline, creating a weak medial bias. A second polarity marker, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), also exhibits weak medial bias in stomatal lineages, whereas ectopic expression of BASL in non-stomatal cells exhibits strong proximal bias, as previously observed in rosette leaves. This proximal bias is also unperturbed by applied tension. Our findings therefore show that cotyledons contain two near-orthogonal coordinated biases in planar polarity: mediolateral and proximodistal.
Keywords: BASL; BRXL; GFP; leaf; mechanosensing; mediolateral; patterning; polarity; proximodistal.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.