Cancer-Cell-Selective Targeting by Arylcyclopropylamine-Vorinostat Conjugates

ACS Med Chem Lett. 2022 Sep 12;13(10):1568-1573. doi: 10.1021/acsmedchemlett.2c00126. eCollection 2022 Oct 13.

Abstract

Anticancer drug delivery by small molecules offers a number of advantages over conventional macromolecular drug delivery systems. We previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) as small-molecule-based drug delivery vehicles for targeting lysine-specific demethylase 1 (LSD1)-overexpressing cancers. In this study, we applied this PDC strategy to the HDAC-inhibitory anticancer agent vorinostat. Among three synthesized PCPA or arylcyclopropylamine (ACPA)-vorinostat conjugates 1, 9, and 32, conjugate 32 with a 4-oxybenzyl linker showed sufficient stability in buffer solutions, potent LSD1 inhibition, efficient LSD1-dependent vorinostat release, and potent and selective antiproliferative activity toward LSD1-expressing human breast cancer and small-cell lung cancer cell lines. These results indicate that the conjugate selectively releases vorinostat in cancer cells. A similar strategy may be applicable to other anticancer drugs.