CULLIN (CUL) proteins are E3 ubiquitin ligases that are involved in a wide variety of biological processes as well as in response to stress in plants. In Salvia miltiorrhiza, CUL genes have not been characterized and its role in plant development, stress response and secondary metabolite synthesis have not been studied. In this study, genome-wide analyses were performed to identify and to predict the structure and function of CUL of S. miltiorrhiza. Eight CUL genes were identified from the genome of S. miltiorrhiza. The CUL genes were clustered into four subgroups according to phylogenetic relationships. The CUL domain was highly conserved across the family of CUL genes. Analysis of cis-acting elements suggested that CUL genes might play important roles in a variety of biological processes, including abscission reaction acid (ABA) processing. To investigate this hypothesis, we treated hairy roots of S. miltiorrhiza with ABA. The expression of CUL genes varied obviously after ABA treatment. Co-expression network results indicated that three CUL genes might be involved in the biosynthesis of phenolic acid or tanshinone. In summary, the mining of the CUL genes in the whole genome of S. miltiorrhiza contribute novel information to the understanding of the CUL genes and its functional roles in plant secondary metabolites, growth and development.
Keywords: CULLIN E3 ubiquitin ligase; Expression pattern; Gene family; Phenolic acid; Salvia miltiorrhiza; Tanshinone.
© 2022 The Authors. Published by Elsevier B.V.