During the last 50 Ma, the East Asian continent has been a zone of massive continental collision and lithospheric deformation. While the consequences of this for Asian surface and lithospheric deformation have been intensively studied over the past 4 decades, the relationships between lithospheric deformation and underlying asthenospheric flow have been more difficult to constrain. Here we present a high resolution 3-D azimuthal anisotropy model for the northeastern Tibetan Plateau and its eastward continuation based on surface-wave tomography and shear-wave splitting measurements. This model shows that eastward lateral flow of asthenosphere beneath the northeastern Tibetan Plateau is being blocked by thick Ordos and Sichuan cratonic keels. The damming effect of these keels induces flow to first rotate around the Ordos keel and then transition into strong east-west flow beneath the thinner lithosphere that forms the lithospheric suture between the two cratonic keels. We further find that asthenosphere flow directions can differ from those of overlying lithosphere, with the asthenosphere neither being passively dragged by overlying lithosphere, nor being able to drag the overlying plate to mimic its subsurface flow. Finally, the region of eastward-channeled asthenospheric flow from Tibet underlies a belt of stronger intracontinental deformation in eastern China.
Keywords: Ordos block; asthenospheric flow; azimuthal anisotropy; northeast Tibetan Plateau; surface wave tomography.