H9N2 subtype avian influenza virus (AIV) is a low pathogenic AIV, which is widely prevalent all over the world. The infection of H9N2 AIV often leads to secondary infection with other pathogens, causing serious economic losses to poultry industry. Up to now, several recombinant Newcastle disease viruses (NDV) expressing H9N2 AIV hemagglutinin (HA) protein had been developed. However, the efficacy of recombinant virus on tracheal and intestinal injury caused by H9N2 AIV was rarely reported. The aim of this study was to evaluate the efficacy of recombinant NDV expressing H9N2 AIV HA protein in respiratory and intestinal tract. In this study, based on Red/ET homologous recombination technology, H9N2 AIV HA gene was embedded into the genome of NDV LaSota vaccine strain to obtain the recombinant virus rNDV-H9. The recombinant virus rNDV-H9 showed similar replication kinetic characteristics with the parent LaSota strain and had good genetic stability. The immunization result showed that rNDV-H9 induced high HI antibody titer against H9N2 AIV. In the H9N2 AIV challenge experiment, rNDV-H9 could significantly reduce the virus shedding in trachea and cloaca. In addition, rNDV-H9 protected the barrier function of chicken intestinal mucosal epithelial cells and reduced the virus-induced inflammatory response to a certain extent, so as to inhibit the abnormal proliferation of E. coli. This study suggests that rNDV-H9 is a promising vaccine candidate against H9N2 AIV.
Keywords: H9N2 avian influenza virus; HA protein; Newcastle disease virus; intestine; trachea.
Copyright © 2022. Published by Elsevier Inc.