Three-center-four-electron halogen bond enables non-metallic complex catalysis for Mukaiyama-Mannich-type reaction

iScience. 2022 Sep 27;25(10):105220. doi: 10.1016/j.isci.2022.105220. eCollection 2022 Oct 21.

Abstract

The three-center-four-electron halogen bond (3c4e X-bond) presents a fundamental design concept for catalysis. By integrating halogen(I) (X+: I+ or Br+), the bis-pyridyl ligand NN, and a non-nucleophilic counteranion Y, we developed non-metallic complex catalysts, [N···X···N]Ys, that exhibited outstanding activity and facilitated the Mukaiyama-Mannich-type reaction of N-heteroaromatics with parts-per-million-level catalyst loading. The high activity of [N···X···N]SbF6 was clearly demonstrated. NMR titration experiments, CSI-MS, computations, and UV-vis spectroscopic studies suggest that the robust catalytic activity of [N···X···N]Y can be attributed to the unique ability of the 3c4e X-bond for binding chloride: i) the covalent nature transforms the [N···X···N]+ complexation to sp2 CH as a hydrogen-bonding donor site, and ii) the noncovalent property allows for the dissociation of [N···X···N]+ for the formation of [Cl···X···Cl]-. This study introduces the application of 3c4e X-bonds in catalysis via halogen(I) complexes.

Keywords: Chemistry; Organic chemistry.