Molecular hydrogen (H2) is one of the most important energy carriers. In the midterm future, a huge amount of H2 will be produced from a variety of hydrocarbon sources through conversion and removal of contaminants such as CO and CO2. However, bypassing these purification processes is desirable, given their energy consumption and environmental impact, which ultimately increases the cost of H2. Here, we demonstrate a strategy to separate H2 from a gaseous mixture of H2/CO/CO2/CH4 that can include an excess of CO and CO2 relative to H2 and simultaneously store it in N-heterocyclic compounds that act as liquid organic hydrogen carriers (LOHCs), which can be applied to produce H2 by subsequent dehydrogenation. Our results demonstrate that LOHCs can potentially be used for H2 purification from CO- and CO2-rich crude H2 in addition to their well-established use in H2 storage.