The Interaction Effect of Laser Irradiation and 6-Benzylaminopurine Improves the Chemical Composition and Biological Activities of Linseed (Linum usitatissimum) Sprouts

Biology (Basel). 2022 Sep 25;11(10):1398. doi: 10.3390/biology11101398.

Abstract

Even though laser light (LL) and 6-benzylaminopurine (BAP) priming are well-known as promising strategies for increasing the growth and nutritional value of several plants, no previous studies have investigated their synergistic effect. Herein, we investigated the effects of laser light, 6-benzylaminopurine (BAP) priming, and combined LL-BAP treatment on the nutritional value, chemical composition, and the biological activity of Linum usitatissimum sprouts. The fresh weight, leaf pigments, primary and secondary metabolites, enzymes, and antimicrobial activities were determined. A substantial enhancement was observed in the growth characteristics and leaf pigments of laser-irradiated and BAP-primed sprouts. Furthermore, the combined treatments improved the accumulation of minerals, vitamins, and amino acids, and also enhanced the N-metabolism more than LL or BAP alone. Furthermore, the combined priming boosted the antioxidant capacity by increasing the contents of fatty acids, phenols, and flavonoids. Antimicrobial activity and the highest increase in bioactive compounds were recorded in linseed sprouts simultaneously treated with LL and BAP. This work suggests that priming L. usitatissimum sprouts with laser light and BAP is a promising approach that can improve the nutritional value and health-promoting impacts of L. usitatissimum sprouts.

Keywords: Linum usitatissimum sprouts; antioxidant activity; laser light 6-benzylaminopurine; microbial activities; phytochemicals; priming.

Grants and funding

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project (grant number: PNURSP2022R214).