Insights into the Antennal Characteristics and Olfactory Strategy of the Endangered Rhino Stomach Bot Fly Gyrostigma rhinocerontis (Diptera: Oestridae)

Insects. 2022 Sep 29;13(10):889. doi: 10.3390/insects13100889.

Abstract

Gyrostigma rhinocerontis (Diptera: Oestridae) is a rare obligate intestinal parasite of both white and black rhinoceroses, which can induce severe myiasis, cause secondary infection, and lead to enormous economic and scientific loss. Antennae are the main sensory organs of G. rhinocerontis, which may have evolved a series of specialized adaptive structures to facilitate the exploitation of their hosts. Here, we thoroughly examine the antennae of G. rhinocerontis via light and scanning electron microscopy. Only microtrichia and chaetic sensilla were observed on the scape and pedicel, and the latter is enlarged, half-enveloping the postpedicel. Four types of sensilla (trichoid sensilla, basiconic sensilla, coeloconic sensilla, and clavate sensilla) and sensory pits are detected on the postpedicel. A set of coeloconic sensilla and a chaetic sensillum are located on the arista. Distribution, type, size, and ultrastructure of antennal sensilla are presented. The antennae of G. rhinocerontis are the largest among Oestridae species, with the most sensilla and the most sensory pits. These antennal characteristics could be correlated to their adaptation for more sensitive and accurate olfactory organs, used to locate their rare and endangered hosts. Accordingly, this morphological evidence supports that the host is an important driving factor in the diversity of antennal morphology in the bot flies.

Keywords: Gyrostigma rhinocerontis; antenna; morphology; myiasis; parasite; pedicel; sensilla; sensory pit; ultrastructure.