Long-term, curative treatment of cutaneous T-cell lymphomas (CTCL) remains a major challenge. Therapy resistance is often based on apoptosis deficiency, and may depend on antiapoptotic Bcl-2 proteins, such as Bcl-2, Bcl-xL, Bcl-w and Mcl-1. For their targeting, several antagonists have been generated, which mimic the Bcl-2 homology domain 3 (BH3 mimetics). As dysregulation and overexpression of Mcl-1 has been reported in CTCL, the use of Mcl-1 inhibitors appears as an attractive strategy. Here, we investigated the effects of the selective Mcl-1 inhibitor S63845 in a series of four CTCL cell lines, in comparison to ABT-263 and ABT-737 (inhibitors of Bcl-2, Bcl-xL and Bcl-w). In two cell lines (HH, HuT-78), S63845 resulted in significant apoptosis induction, decrease in cell viability, loss of mitochondrial membrane potential and caspase activation, while two other cell lines (MyLa, SeAx) remained completely resistant. An inverse correlation was found, as S63845-resistant cells were highly sensitive to ABT-263/-737, and S63845-sensitive cells showed only moderate sensitivity to ABTs. Combinations of S63845 and ABT-263 partially yielded synergistic effects. As concerning Bcl-2 protein expression, weaker Mcl-1 expression was found in S63845-resistant MyLa and SeAx, while for Bcl-2 and Bcl-xL, the lowest expression was found in the highly sensitive cell line HH. The most striking difference between S63845-resistant and -sensitive cells was identified for Bcl-w, which was exclusively expressed in S63845-resistant cells. Thus, CTCL may be efficiently targeted by BH3 mimetics, providing the right target is preselected, and Bcl-w expression may serve as a suitable marker.
Keywords: BH3 mimetics; Bcl-2 proteins; non-Hodgkin lymphoma.