Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients?

Metabolites. 2022 Oct 14;12(10):972. doi: 10.3390/metabo12100972.

Abstract

This study hypothesized that persistent homology (PH) features could capture more intrinsic information about the metabolism and morphology of tumors from 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images of patients with head and neck (HN) cancer than other conventional features. PET/CT images and clinical variables of 207 patients were selected from the publicly available dataset of the Cancer Imaging Archive. PH images were generated from persistent diagrams obtained from PET/CT images. The PH features were derived from the PH PET/CT images. The signatures were constructed in a training cohort from features from CT, PET, PH-CT, and PH-PET images; clinical variables; and the combination of features and clinical variables. Signatures were evaluated using statistically significant differences (p-value, log-rank test) between survival curves for low- and high-risk groups and the C-index. In an independent test cohort, the signature consisting of PH-PET features and clinical variables exhibited the lowest log-rank p-value of 3.30 × 10-5 and C-index of 0.80, compared with log-rank p-values from 3.52 × 10-2 to 1.15 × 10-4 and C-indices from 0.34 to 0.79 for other signatures. This result suggests that PH features can capture the intrinsic information of tumors and predict prognosis in patients with HN cancer.

Keywords: head and neck cancer; persistent homology; prognostic prediction; radiomics.