Previous studies have demonstrated the anticancer activities of tocotrienol on several types of cancer, but its effects on chondrosarcoma have never been investigated. Therefore, this study aims to determine the anticancer properties of annatto tocotrienol (AnTT), γ-tocotrienol (γ-T3) and δ-tocotrienol (δ-T3) on human chondrosarcoma SW1353 cells. Firstly, the MTT assay was performed to determine the half-maximal inhibitory concentration (IC50) of tocotrienol on SW1353 cells after 24 h treatment. The mode of cell death, cell cycle analysis and microscopic observation of tocotrienol-treated SW1353 cells were then conducted according to the respective IC50 values. Subsequently, RNAs were isolated from tocotrienol-treated cells and subjected to RNA sequencing and transcriptomic analysis. Differentially expressed genes were identified and then verified with a quantitative PCR. The current study demonstrated that AnTT, γ-T3 and δ-T3 induced G1 arrest on SW1353 cells in the early phase of treatment (24 h) which progressed to apoptosis upon 48 h of treatment. Furthermore, tocotrienol-treated SW1353 cells also demonstrated large cytoplasmic vacuolation. The subsequent transcriptomic analysis revealed upregulated signalling pathways in endoplasmic reticulum stress, unfolded protein response, autophagy and transcription upon tocotrienol treatment. In addition, several cell proliferation and cancer-related pathways, such as Hippo signalling pathway and Wnt signalling pathway were also significantly downregulated upon treatment. In conclusion, AnTT, γ-T3 and δ-T3 possess promising anticancer properties against chondrosarcoma cells and further study is required to confirm their effectiveness as adjuvant therapy for chondrosarcoma.
Keywords: anti-proliferation; apoptosis; cell cycle arrest; endoplasmic reticulum; paraptosis; vitamin E.