Photonic crystal backbone for light trapping inside an ultrathin, low absorbing layer

Opt Express. 2022 Aug 1;30(16):29694-29707. doi: 10.1364/OE.461390.

Abstract

A few tens of nanometre thick ultrathin materials may suffer from a very low absorption at their band edges. In this work, we investigate a photonic crystal (PC) made of a lowcost, transparent patterned silicon nitride (SiNx) layer, conformally covered with an ultrathin active layer (e.g., 20 nm TiO2) in view of its use in various applications such as photocatalysis. A fair estimation of the absorption enhancement, considering the volume of the active material, is calculated using RCWA. A remarkable enhancement (more than ten-folds) in absorptance in the near UV range and a very high transmittance over the visible range are observed. A detailed modal analysis of the structures-of-interest unravels the Light Trapping (LT) mechanisms and allows the derivation of key design guidelines. Optical measurements on a patterned sample provide a first proof-of-concept of such possible photonic backbone structures suitable for highly efficient depollution and artificial photosynthesis for solar fuels production.