Background: Both TP53 mutation and MYC amplification indicate poor outcomes in breast cancer (BC), but the clinical values of concurrent TP53 and MYC alterations have not been well-characterized.
Methods: A total of 494 BC patients diagnosed at Guangdong Provincial People's Hospital (GDPH) were retrospectively analyzed. Genomic alterations were determined using next-generation sequencing. Survival analysis was applied to assess the effects of genetic alterations on relapse-free survival. The prognosis was verified based on 1405 patients from METABRIC cohort. Additionally, we used logistic regression to identify the factors associated with pathological complete response (pCR) after neoadjuvant chemotherapy.
Results: In GDPH cohort, patients with TP53/MYC co-alteration exhibited higher grade and stage, more positive HER2 status and higher Ki67 levels, but less luminal A subtypes. They also had more mutations in genes involved in ERBB and TGF-β signaling pathways, as well as exclusive FANCG/CDKN2B/QKI copy number amplifications and SUFU/HIST3H3/ERCC4/JUN/BCR mutations. Concurrent TP53 and MYC alterations independently increased hazards of relapse (HR, 5.425; 95% CI: 2.019-14.579; p < 0.001). They maintained independent significance for relapse-free (HR, 1.310; 95% CI: 1.012-1.697; p = 0.041) and overall survival (HR, 1.373; 95% CI: 1.093-1.725; p = 0.006) in METABRIC cohort. Among the 81 patients receiving chemotherapy, TP53 mutation (OR, 5.750; 95% CI: 1.553-25.776; p = 0.013) and earlier stage (OR, 0.275; 95% CI 0.088-0.788; p = 0.020) were associated with pCR, while the co-alteration did not serve as an independent predictor (p = 0.199).
Conclusions: TP53/MYC co-alteration was associated with distinct clinicopathological and genomic features. They also conferred unfavorable prognosis in BC patients, and did not improve pCR after neoadjuvant chemotherapy.
Keywords: MYC amplification; TP53 mutation; breast cancer (BC); next-generation sequencing (NGS); prognosis.
© 2022 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.