Background: Transcutaneous electrical stimulation on the motor points over muscle belly, i.e., motor point stimulation (MPS), is widely used in clinical settings, however it is not fully understood how MPS recruits motor nerves. Here we investigated the recruitment pattern of the motor nerve and twitch force during MPS and compared to the recruitment during peripheral nerve stimulation (PNS).
Methods: Ten healthy individuals participated in this study. Using MPS on the soleus muscle and PNS on the tibial nerve, a single pulse stimulation was applied with various stimulation intensities from subthreshold to the maximum intensity. We measured the evoked potentials in the lower leg muscles and twitch force. Between MPS and PNS, we compared the recruitment curves of M-waves and the dynamics of twitch force such as duration from force onset to peak (time-to-peak).
Results: The maximum M-wave was not different between MPS and PNS in the soleus muscle, while it was much smaller in MPS than in PNS in the other lower leg muscles. This reflected the smaller twitch force of plantarflexion in MPS than PNS. In addition, the slope of the recruitment curve for the soleus M-wave was smaller in MPS than PNS.
Conclusion: Therefore, unlike PNS, MPS can efficiently and selectively recruit motor nerves of the target muscle and gradually increase the recruitment of the motor nerve.
Keywords: M-wave; electrical stimulation; motor point stimulation; motor unit; recruitment gain.
© 2022 The Authors. Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.