Purpose: To assess the reliability of successive Corvis ST® measurements (CST, Oculus, Wetzlar, Germany) in keratoconus (KC) ≥ 2 years after accelerated corneal crosslinking (9 mW/cm2, 10 min, 5.4 J/cm2) compared to untreated KC corneas.
Methods: Three successive CST measurements per eye were performed in ≥ 2 years after CXL (CXLG, n = 20 corneas of 16 patients) and a control group consisting of non-operated, ABC-stage-matched KC corneas according to Belin's ABCD KC grading (controls, n = 20 corneas, 20 patients). Main outcome measures included maximal keratometry (Kmax), the Belin/Ambrósio-Enhanced-Ectasia-Deviation-Index BAD-D; the biomechanical parameters A1 velocity, deformation amplitude (DA) ratio 2 mm, Ambrósio relational thickness to the horizontal profile (ARTh), integrated radius, stiffness parameter A1 (SP-A1), and the Corvis Biomechanical Factor (CBiF, the linearized term of the Corvis Biomechanical Index). Mean values, standard deviations, and Cronbach's alpha (CA) were calculated.
Results: Both groups were tomographically comparable (BAD: 11.5 ± 4.7|11.2 ± 3.6, p = 0.682, Kmax: 60.5 ± 7.2|60.7 ± 7.7, p = 0.868 for controls|CXLG, paired t-test). A1 velocity (mean ± SD: 0.176 ± 0.02|0.183 ± 0.02, p = 0.090, CA: 0.960|0.960), DA ratio 2 mm (6.04 ± 1.13|6.14 ± 1.03, p = 0.490, CA: 0.967|0.967), integrated radius (12.08 ± 2.5|12.42 ± 1.9, p = 0.450, CA: 0.976|0.976), and CBiF (4.62 ± 0.6|4.62 ± 0.4, p = 0.830, CA: 0.965|0.965) were also comparable (controls|CXLG). ARTh was significantly higher in controls (177.1 ± 59, CA: 0.993) than after CXL (155.21 ± 65, p = 0.0062, CA: 0.993) and SP-A1 was significantly higher after CXL (59.2 ± 13, CA: 0.912) than in controls (52.2 ± 16, p = 0.0018, CA: 0.912).
Conclusion: ARTh and SP-A1 differed significantly between controls and CXLG. Biomechanical measurements were generally of excellent reliability in both groups. CXL seems to affect biomechanical measurements of human corneas over more than 2 years.
Keywords: Biomechanical E-staging; Corneal biomechanics; Corneal crosslinking; Corvis; Keratoconus.
© 2022. The Author(s).