Background: Early-onset Alzheimer's disease (EOAD) is highly influenced by genetic factors. Numerous mutations in amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN1 and PSEN2) have been identified for EOAD, but they can only account for a small proportion of EOAD cases.
Objective: This study aimed to screen genetic mutations and variants associated with EOAD among Han Chinese adults.
Methods: This study included 34 patients with EOAD and 26 controls from a population-based study and neurological ward. We first sequenced mutations in APP/PSENs and then performed whole-exome sequencing in the remaining patients with negative mutations in APP/PSENs to screen for additional potential genetic variants. Among patients who were negative in genetic screening tests, we further evaluated the risk burden of genes related to the Aβ metabolism-centered network to search for other probable causes of EOAD.
Results: We identified 7 functional variants in APP/PSENs in 8 patients, including 1 APP mutation (p. Val715Met), 3 PSEN1 mutations (p. Phe177Ser; p. Arg377Met; p. Ile416Thr), and 3 PSEN2 mutations (p. Glu24Lys; p. Gly34Ser; p. Met239Thr). Of the remaining 26 EOAD cases without mutations in APP/PSENs, the proportion of carrying rare variants of genes involved in Aβ and APP metabolism was significantly higher than that of controls (84.6% vs. 73.1%, P=0.042). Thirty-one risk genes with 47 variants were identified in 22 patients. However, in 26 normal subjects, only 20 risk genes with 29 variants were identified in 19 subjects.
Conclusions: Our findings demonstrate the role of APP/PSENs mutations in EOAD, identifying a new PSEN2 missense mutation, and further offer valuable insights into the potential genetic mechanisms of EOAD without APP/PSENs mutations among Han Chinese.
Keywords: Aβ-centered network; Early-onset Alzheimer’s disease; genetic mutations; genetic variants.; neurology; whole-exome sequencing.
Copyright© Bentham Science Publishers; For any queries, please email at [email protected].