In this Letter, we investigate a new class of polarization wave front transformations which exhibit nonconventional far field interference behavior. We show that these can be realized by double-layer metasurfaces, which overcome the intrinsic limitations of single-layer metasurfaces. Holograms that encode four or more distinct patterns in nonorthogonal polarization states are theoretically demonstrated. This Letter clarifies and expands the possibilities enabled by a broad range of technologies which can spatially modulate light's polarization state and, for metasurfaces specifically, rigorously establishes when double-layer metasurfaces are-and are not-required.