Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed. These results indicate that mesenchymal stromal cells (MSCs) or cancer-associated fibroblasts (CAFs) in the heterotypic tumor cell clusters may facilitate metastatic dissemination by transporting low-motile cancer cells in a Rac-dependent manner and that extracellular vesicles secreted by mesenchymal cells only play a minor role in this process. Furthermore, in vivo studies show that cancer cell spheroids containing MSCs or CAFs have faster spreading rates. These findings highlight the active role of co-traveling stromal cells in the collective migration of tumor cell clusters and may help in developing better-targeted therapies.
Keywords: circulating tumor cell clusters; collective cell migration; extracellular vesicles; micropatterned hydrogels; spheroid migration assay.
© 2022 Wiley-VCH GmbH.