The apportionment of the contribution of wood smoke emitted particles to the total concentration of particulate matter in a region has been greatly aided by the development of new analytical methods. These analytical methods quantitatively determine organic marker compounds unique to wood combustion such as levoglucosan and dehydroabietic acid. These markers have generally been determined in 24-hour averaged samples. We have developed an instrument based on the collection of particles on an inert filter, desorption of the organic material in an inert atmosphere with subsequent GC separation and MS detection of the desorbed compounds. The GC-MS Organic Aerosol Monitor (OAM) instrument has been used in three field studies. An unexpected finding from these studies was the quantification of the contribution of secondary organic aerosols from gases present in wood smoke in addition to primary wood smoke emitted particles. The identification of this secondary material was made possible by the collection of hourly averaged data that allowed for the time patterns of black carbon, organic material, and wood smoke marker compounds to be included and compared in a Positive Matrix Factorization (PMF) analysis. Most of the organic markers associated with wood smoke (levoglucosan, stearic acid and dehydroabietic acid) are associated with primary wood smoke emissions, but a fraction of the levoglucosan and stearic acid are also associated with secondary organic material formed from gaseous precursors in wood smoke. Additionally, this secondary material was shown to be present in each in of the three urban area where wood smoke burning occurs. There is a need for additional studies to better understand the contribution of secondary particulate formation from both urban and wildfires.Implications: This paper presents results from three field studies which show that in addition to the formation of primary particulate matter from the combustion of wood smoke and secondary particulate matter is also formed from the gaseous compounds emitted with the wood smoke. This material is identified in the studies of wood combustion reported here by the identification and quantification of specific organic marker compounds related to wood combustion and is shown to and represents a contributor nearly as large as the primary emitted material and better quantifying the impact of wood combustion on airborne fine particulate matter.