Coexistence of tet(A) and blaKPC-2 in the ST11 hypervirulent tigecycline- and carbapenem-resistant Klebsiella pneumoniae isolated from a blood sample

Eur J Clin Microbiol Infect Dis. 2023 Jan;42(1):23-31. doi: 10.1007/s10096-022-04512-6. Epub 2022 Nov 2.

Abstract

Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.

Keywords: Carbapenem-resistant; Hypervirulent; Klebsiella pneumoniae; ST11; Tigecycline-resistant.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Carbapenem-Resistant Enterobacteriaceae* / genetics
  • Carbapenems / pharmacology
  • Humans
  • Klebsiella Infections* / epidemiology
  • Klebsiella Infections* / microbiology
  • Klebsiella pneumoniae
  • Multilocus Sequence Typing
  • Phylogeny
  • Plasmids / genetics
  • Tigecycline / pharmacology
  • beta-Lactamases / genetics

Substances

  • Tigecycline
  • Anti-Bacterial Agents
  • beta-Lactamases
  • Carbapenems