Introduction: Moringa oleifera is known as a 'natural nutrition of the tropics' because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells.
Methods: Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells.
Results: As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 μg/mL of MOL extract, whereas 100 and 200 μg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 μg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as β-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties.
Conclusion: The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development.
Keywords: Cytotoxicity; Drug development; Moringa oleifera leaf; Osteoblast-like SaOS-2 cells.
© 2022 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC.