During many years, chemo-immunotherapy fludarabine-cyclophosphamide-rituximab (FCR) was the gold standard for first line treatment of medically fit patients with symptomatic B-chronic lymphocytic leukemia (CLL). Over the last decade, targeted biotherapies have revolutionized the treatment of B-CLL patients and almost entirely supplanted FCR. However, no biomarker still exists to predict the complete remission (CR) with undetectable minimal residual disease (uMRD) in bone marrow (BM), which remains the best predictive factor for survival. MicroRNAs represent a class of molecular biomarkers which expression is altered in B-CLL. Our study aimed at identifying before treatment blood miRNAs that predict treatment outcome in previously untreated B-CLL patients (NCT01370772, https://clinicaltrials.gov/ct2/show/NCT01370772). Using hierarchical clustering of miRNA expression profiles discriminating 8 patients who achieved CR with BM uMRD from 8 patients who did not achieve CR and displayed detectable BM MRD, we identified 25 miRNAs differentially expressed before treatment. The expression of 11 miRNAs was further validated on a larger cohort (n=123). Based on the dosage of 5 miRNAs at diagnosis, a decision tree was constructed to predict treatment outcome. We identified 6 groups of patients with a distinct probability of being CR with BM uMRD to FCR treatment, ranging from 72% (miR-125b, miR-15b and miR-181c high) to 4% (miR-125b and miR-193b low). None of the patients displaying high expression levels of miR-125b, miR-15b and miR-181c relapsed during study follow-up. In contrast, patients with low miR-15b and high miR-412, or with low miR-125b and miR-193b, demonstrated significant low PFS. RNA sequencing of blood at diagnosis identified that patients relapsing after treatment are characterized by significant enrichment of gene signatures related to cell cycle, MYC target genes, metabolism and translation regulation. Conversely, patients achieving CR with BM uMRD displayed significant enrichment in genes related to communication between CLL cells and the microenvironment, immune system activation and upregulation of polycomb PRC2 complex target genes. Our results suggest that blood miRNAs are potent predictive biomarkers for FCR treatment efficacy and might be implicated in the FCR efficacy in B-CLL patients, providing new insight into unmet need for the treatment of B-CLL patients and identifying pathways predictive of patients' remission.
Clinical trial registration: ClinicalTrials.gov, identifier NCT01370772.
Keywords: B-CLL; diagnosis; microRNA; prediction; trancriptomics; treatment outcome.
Copyright © 2022 Duroux-Richard, Gagez, Alaterre, Letestu, Khalifa, Jorgensen, Leprêtre, Tchernonog, Moreaux, Cartron and Apparailly.