Organic-inorganic perovskite halides (OIPH) have emerged as a wonder material with growing interest in sensors detecting various toxic gases. However, lead toxicity represents a potential obstacle, and therefore finding lead-free cost-effective compatible materials for gas sensing applications is essential. In this work, methylammonium bismuth iodide i.e. (CH3NH3)3Bi2I9(MABI) perovskite thin films-based ammonia (NH3) sensor was synthesized using an antisolvent-assisted one-step spin coating method. The MABI sensor shows a linear relationship between the responsivity and concentration of NH3with excellent reversibility, high gas responsivity, and humidity stability. The MABI thin-film sensor exhibits a maximum gas response of 24%, a short response/recovery time i.e. 0.14 s /8.15 s and good reversibility at 6 ppm of NH3. It was observed that MABI thin films based sensors have excellent ambient stability over a couple of months. This work reveals that it is feasible to design high-performance gas sensors based on environmentally-friendly Bi-based OIPH materials.
Keywords: ammonia; bismuth etc; lead-free; perovskite; sensors.
© 2022 IOP Publishing Ltd.