Preterm infants face a significant risk of brain injury in the perinatal period, as well as potential long-term neurodevelopmental disabilities. However, preterm children with brain injury lack specific clinical manifestations in the early days. Therefore, timely and accurate diagnosis of brain injury is of vital importance. This study was to explore the diagnostic efficiency of myelin basic protein (MBP) and 8-oxo-deoxyguanosine (8-oxo-dG) serum levels in brain injury of premature infants. A total of 75 preterm infants with gestational age between 28 and 32 weeks and birth weight higher than 1,000 g were prospectively included. MBP serum levels were significantly higher in premature infants with white matter injury (WMI). 8-oxo-dG serum levels were significantly increased in both WMI and periventricular-intraventricular hemorrhages (PIVH). MBP and 8-oxo-dG were significantly correlated. The area under the curve was 0.811 [95% confidence interval (CI) 0.667-0.955; p = 0.002] in MBP and 0.729 (95% CI 0.562-0.897; p = 0.020) in 8-oxo-dG. Therefore, the results showed that high MBP levels indicated a possibility of WMI in the premature brain during the early postnatal period, while high 8-oxo-dG levels were closely related to both WMI and PIVH, thus suggesting that MBP and 8-oxo-dG could be used as potential neuro-markers of preterm brain injury.
Keywords: 8-oxo-deoxyguanosine; brain injury; myelin basic protein; periventricular–intraventricular hemorrhages; preterm infants; white matter injury.
© 2022 Yuwei Zhao et al., published by De Gruyter.