Purpose: Shorter hypofractionated radiation therapy (HF-RT) schedules may have radiobiological, patient convenience and healthcare resource advantages over conventionally fractionated radiation therapy (CF-RT) in glioblastoma (GBM). We report outcomes of young, fit GBM patients treated with HF-RT and CF-RT during the COVID-19 pandemic, and a meta-analysis of HF-RT literature in this patient subgroup.
Methods: Hospital records of patients with IDH-wildtype GBM treated with HF-RT (50 Gy/20 fractions) and CF-RT (60 Gy/30 fractions) between January 2020 and September 2021 were reviewed. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method. Univariable analysis was performed using Cox regression analysis. A systematic search and meta-analysis of studies from January 2000 to January 2022 was performed.
Results: 41 patients were treated (HF-RT:15, CF-RT:26). For both HF-RT and CF-RT groups, median age was 58 years and 80-90% were ECOG 0-1. There were more methylated tumours in the HF-RT group. All patients received concurrent/adjuvant temozolomide. At 19.2 months median follow-up, median OS was 19.8 months and not-reached for HF-RT and CF-RT (p = 0.5), and median PFS was 7.7 and 5.8 months, respectively (p = 0.8). HF-RT or CF-RT did not influence OS/PFS on univariable analysis. Grade 3 radionecrosis rate was 6.7% and 7.7%, respectively. 15 of 1135 studies screened from a systematic search were eligible for meta-analysis. For studies involving temozolomide, pooled median OS and PFS with HF-RT were 17.5 and 9.9 months (927 and 862 patients). Studies using shortened HF-RT schedules reported 0-2% Grade 3 radionecrosis rates.
Conclusion: HF-RT may offer equivalent outcomes and reduce treatment burden compared to CF-RT in young, fit GBM patients.
Keywords: Glioblastoma; Hypofractionation; Overall survival; Radiotherapy; Temozolomide.
© 2022. The Author(s).