Our aim was to identify and quantify high coronary artery calcium (CAC) with deep learning (DL)-powered CAC scoring (CACS) in oncological patients with known very high CAC (≥ 1000) undergoing 18F-FDG-PET/CT for re-/staging. 100 patients were enrolled: 50 patients with Agatston scores ≥ 1000 (high CACS group), 50 patients with Agatston scores < 1000 (negative control group). All patients underwent oncological 18F-FDG-PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) by 99mTc-tetrofosmin within 6 months. CACS was manually performed on dedicated non-contrast ECG-gated CT scans obtained from SPECT-MPI (reference standard). Additionally, CACS was performed fully automatically with a user-independent DL-CACS tool on non-contrast, free-breathing, non-gated CT scans from 18F-FDG-PET/CT examinations. Image quality and noise of CT scans was assessed. Agatston scores obtained by manual CACS and DL tool were compared. The high CACS group had Agatston scores of 2200 ± 1620 (reference standard) and 1300 ± 1011 (DL tool, average underestimation of 38.6 ± 26%) with an intraclass correlation of 0.714 (95% CI 0.546, 0.827). Sufficient image quality significantly improved the DL tool's capability of correctly assigning Agatston scores ≥ 1000 (p = 0.01). In the control group, the DL tool correctly assigned Agatston scores < 1000 in all cases. In conclusion, DL-based CACS performed on non-contrast free-breathing, non-gated CT scans from 18F-FDG-PET/CT examinations of patients with known very high (≥ 1000) CAC underestimates CAC load, but correctly assigns an Agatston scores ≥ 1000 in over 70% of cases, provided sufficient CT image quality. Subgroup analyses of the control group showed that the DL tool does not generate false-positives.
© 2022. The Author(s).