Bioactive Components and Health Potential of Endophytic Micro-Fungal Diversity in Medicinal Plants

Antibiotics (Basel). 2022 Nov 2;11(11):1533. doi: 10.3390/antibiotics11111533.

Abstract

The endophytic fungi that reside inside medicinal plants have the potential to produce various pharmaco-potential bioactive compounds. The endophytic fungi Graminicolous helminthosporium, Bipolaris australiensis and Cladosporium cladosporioides were isolated from different medicinal plants. The GC-MS analysis of intra- and extracellular products of endophytic fungi revealed the presence of various bioactive metabolites, such as Anthracene, Brallobarbital, Benzo [h] quinolone, Ethylacridine, 2-Ethylacridine, Cyclotrisiloxane, 5 methyl 2 phenylindolizine, and 1,4-Cyclohexadien-1-one, etc. The phytochemical composition analysis of endophytic fungus extracts also revealed the presence of flavonoids, phenols, saponins, carbohydrates, glycosides, and proteins. The intra- and extracellular endophytic extracts exhibited strong antibacterial and antioxidant activity, which was screened with the agar-well diffusion method and DPPH, H2O2, and nitric oxide scavenging activity, respectively. The bioactive compounds identified in the endophytic extracts from GC-MS profiling served as ligands for molecular-docking analysis to investigate the anticancer potential against non-small cell lung carcinoma receptor EGFR. Molecular docking results showed that compounds, such as Brallobarbital, and 5 methyl 2 phenylindolizine had the lowest E- min values, which suggests that these compounds could be used in anticancer drug development. Thus, the isolated endophytic fungal species can be used to produce various bioactive compounds that could be used in novel drug development from natural sources and reduce the environmental burden of synthetic chemical drugs.

Keywords: FTIR; GC-MS; antibacterial; antioxidant; bioactive compounds; entophytic fungi; molecular docking.

Grants and funding

This research received no external funding.