The increasing prevalence of obesity worldwide has promoted research on human metabolism and foods such as sofrito, a tomato and olive oil-based sauce from the Mediterranean diet, has shown beneficial effects on obesity and related complications. Sofrito has been associated with better cardiovascular health, metabolic syndrome, and anti-inflammatory effects. The aim of this study was to understand how sofrito intake could contribute to the control of energy metabolism in obese rats. For this purpose, integrative untargeted lipidomics, metabolomics, and targeted gene expression approaches were used in the liver and adipose tissue to identify metabolic changes and the mechanism of action promoted by sofrito intake. A new biomarker was identified in the liver, butanediol glucuronide, an indicator of ketogenic activation and lipid oxidation after the sofrito intervention. Gene expression analysis revealed an increase in the uptake and liver oxidation of lipids for energy production and ketogenesis activation as fuel for other tissues in sofrito-fed animals. Sofrito altered the lipidomic profile in the fat depots of obese rats. This multiomics study identifies a new biomarker linked to the beneficial actions of sofrito against obesity and provides further insight into the beneficial effect of the Mediterranean diet components.
Keywords: Mediterranean diet; butanediol glucuronide; ketogenesis; lipidomics; metabolomics; obesity.