Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Keywords: Cadherin; Cell sorting; Cortical tension; Myosin II; Nectin.
Copyright © 2022 Elsevier Ltd. All rights reserved.