Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.
Keywords: Ecotoxicity; Emerging contaminants; Hybrid remediation technologies; Industrial products; Perchlorate; Thyroid hormone.
Copyright © 2022 Elsevier Ltd. All rights reserved.