Plant growth and its changes over space and time are effective indicators for signifying ecosystem health. However, large uncertainties remain in characterizing and attributing vegetation changes in the ecologically fragile South China Karst region, since most existing studies were conducted at a coarse spatial resolution or covered limited time spans. Considering the highly fragmented landscapes in the region, this hinders their capability in detecting fine information of vegetation dynamics taking place at local scales and comprehending the influence of climate change usually over relatively long temporal ranges. Here, we explored the spatiotemporal variations in vegetation greenness for the entire South China Karst region (1.9 million km2) at a resolution of 30m for the notably increased time span (1987-2018) using three decadal Landsat images and the cloud-based Google Earth Engine. Moreover, we spatially attributed the vegetation changes and quantified the relative contribution of driving factors. Our results revealed a widespread vegetation recovery in the South China Karst (74.80%) during the past three decades. Notably, the area of vegetation recovery tripled following the implementation of ecological engineering compared with the reference period (1987-1999). Meanwhile, the vegetation restoration trend was strongly sustainable beyond 2018 as demonstrated by the Hurst exponent. Furthermore, climate change contributed only one-fifth to vegetation restoration, whereas major vegetation recovery was highly attributable to afforestation projects, implying that anthropogenic influences accelerated vegetation greenness gains in karst areas since the start of the new millennium during which ecological engineering was continually established. Our study provides additional insights into ecological restoration and conservation in the highly heterogeneous karst landscapes and other similar ecologically fragile areas worldwide.
Keywords: afforestation; climate change; ecological fragile areas; spatial-temporal evolution; vegetation greenness.
Copyright © 2022 Pei, Wang, Huang, Wang, Li, Wang, Yang, Cao, Fang and Niu.