The detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to occur, thereby delaying the delivery of a secondary treatment to patients with recurring tumors. To address this issue, we propose to use patient-specific forecasts of PSA dynamics to predict biochemical relapse earlier. Our forecasts are based on a mechanistic model of prostate cancer response to external beam radiotherapy, which is fit to patient-specific PSA data collected during standard posttreatment monitoring. Our results show a remarkable performance of our model in recapitulating the observed changes in PSA and yielding short-term predictions over approximately 1 year (cohort median root mean squared error of 0.10-0.47 ng/mL and 0.13 to 1.39 ng/mL, respectively). Additionally, we identify 3 model-based biomarkers that enable accurate identification of biochemical relapse (area under the receiver operating characteristic curve > 0.80) significantly earlier than standard practice (p < 0.01).
Keywords: Biological sciences; Cancer; Oncology; Systems biology.
© 2022 The Author(s).