This paper reports on an aluminum nitride (AlN) piezoelectric micromachined ultrasound transducer (PMUT) array for photoacoustic (PA) imaging, where the high-order resonance modes of the PMUT are utilized to improve imaging resolution. A flexural vibration mode (FVM) PMUT is fabricated and applied in a photoacoustic imaging (PAI) system. Specifically, the microelectromechanical system (MEMS)-based PMUT is suitable for PA endoscopic imaging of blood vessels and bronchi due to its miniature size and high sensitivity. More importantly, AlN is a nontoxic material, which makes it harmless for biomedical applications. In the PAI system, the AlN PMUT array is used to detect PA signals, and the acousto-mechanical response is designed and optimized at the PMUT's fundamental resonance. In this work, we focus on the high-order resonance performance of the PMUT PAI beyond the fundamental resonance. The acoustic and electrical responses of the PMUT's high-order resonance modes are characterized and analyzed. The fundamental and three high-order resonance bandwidths are 2.2, 8.8, 18.5, and 48.2 kHz. Compared with the resolution at the fundamental resonance mode, the resolutions at third- and fourth-order resonance modes increase by 38.7% and 76.9% in a phantom experiment. The high-order resonance modes of the AlN PMUT sensor array provide higher central frequency and wider bandwidth for PA signal detection, which increase the resolution of PAI compared to the PMUT working at the fundamental resonance mode.
Keywords: Electrical and electronic engineering; Physics.
© The Author(s) 2022.