A short peptide encoded by long non-coding RNA small nucleolar RNA host gene 6 promotes cell migration and epithelial-mesenchymal transition by activating transforming growth factor-beta/SMAD signaling pathway in human endometrial cells

J Obstet Gynaecol Res. 2023 Jan;49(1):232-242. doi: 10.1111/jog.15476. Epub 2022 Nov 17.

Abstract

Background: Endometrial dysfunction is closely correlated with the development of multiple severe gynecological disorders including intrauterine adhesion. Accumulating evidence supports that some long non-coding RNAs (lncRNAs) have peptide-coding potential. In this text, the peptide-coding ability of lncRNA SNHG6 was examined. Also, the effects of an SNHG6-encoded peptide on the viability and migration of human endometrial stromal cells (hESCs) and human endometrial epithelial cells (hEECs) and related molecular mechanisms were explored.

Methods: The peptide-encoding potential of SNHG6 was predicted by FuncPEP and getorf databases and validated by western blot assay. Cell viability was tested by cell counting kit-8 assay. Cell migratory ability was examined by wound healing and transwell migration assays. Protein levels of genes were measured by western blot assay.

Results: Prediction analysis suggested that SNHG6 had the potential peptide-coding ability and multiple open-reading frames (ORFs). Western blot validated that SNHG6 ORF#1 and ORF#2 could translate into short peptides. SNHG6 ORF#2 overexpression facilitated cell migration and epithelial-mesenchymal transition (EMT) in hESCs and hEECs, while these effects were abrogated by transforming growth factor-beta (TGF-β)/SMAD signaling inhibitor GW788388. Moreover, GW788388 inhibited the increase of p-SMAD2 and p-SMAD3 levels induced by SNHG6 ORF#2 in hESCs. SNHG6 ORF#2-encoded peptide did not influence endometrial stromal and epithelial cell viability.

Conclusions: LncRNA SNHG6 ORF#1 and ORF#2 could translate into small peptides and SNHG6 ORF#2 overexpression promoted cell migration and EMT by activating the TGF-β/SMAD pathway in hESCs and hEECs, suggesting the potential roles of SNHG6-encoded peptides in the development of endometrial stromal and epithelial cells and related gynecological diseases.

Keywords: EMT; SMAD; SNHG6; TGF-β; lncRNA; migration; peptide.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Epithelial-Mesenchymal Transition / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • RNA, Small Nucleolar / pharmacology
  • Signal Transduction
  • Transforming Growth Factor beta / pharmacology
  • Transforming Growth Factors / genetics
  • Transforming Growth Factors / metabolism
  • Transforming Growth Factors / pharmacology

Substances

  • RNA, Long Noncoding
  • 4-(4-(3-(pyridin-2-yl)-1H-pyrazol-4-yl)pyridin-2-yl)-N-(tetrahydro-2H-pyran-4-yl)benzamide
  • RNA, Small Nucleolar
  • Transforming Growth Factor beta
  • Transforming Growth Factors