Biofuels from microalgal biomass is among some of the promising sustainable energy technologies that can significantly replace the dependence on fossil fuels worldwide due to potentiality to lower CO2 emissions. Nevertheless, the extraction of biomolecules for biofuel generation is inhibited by the rigidity of the cellular structure of microalgal biomass. Various pretreatment strategies have been evaluated for their efficacy in microalgal cell wall disruption to enhance microalgal bioenergy production. However, the efficiency of the pretreatment methods depend on the particular species being treated due to the inherent variability of the composition of the cell wall. This paper reviews pretreatment strategies (mainly novel physical, chemical and physicochemical) employed in bioenergy generation from microalgal biomass, address existing constraints and provides prospects for economic and industrial-scale production. The authors have also discussed the different pretreatment methods used for biodiesel, bioethanol, and biohydrogen production.
Keywords: Biodiesel; Bioethanol; Biohydrogen; Cell wall disruption; Microalgae; Pretreatment.
Copyright © 2022 Elsevier Ltd. All rights reserved.