Two zinc (Zn) complexes, [Zn2(DAT)2Cl4] (I) and [Zn2(DAT)2(NO3)4] (II), were prepared by grinding 3,5-diamino-1,2,4-triazole (C2H5N5, DAT) with Zn precursors such as ZnCl2 and Zn(NO3)2, respectively. This solid-state reaction gives the corresponding Zn complex as the sole product in over 99% yield. This mechanochemical method promotes the selective formation of Zn complexes different from those obtained using the conventional solution-based route. The crystal structures of the two complexes were analyzed by single-crystal X-ray diffraction. Complex (I) crystallizes in the monoclinic space group P21/c, whereas complex (II) crystallizes in the triclinic space group P 1̅. Each complex is characterized by the presence of a characteristic DAT-bridged dimer with one DAT ligand per Zn atom, and the DAT ligand provides a bridge between the two Zn metals. All Zn centers of (I) and (II) adopted a slightly distorted tetrahedral geometry. Both complexes contain a hexanuclear Zn2N4 ring, but their ring structures are different. Complex (I) possesses a boat geometry, while complex (II) has a nearly planar structure. The Zn-bound chlorides of complex (I) form intermolecular N-H···Cl hydrogen bonds that link neighboring molecules. In complex (II), the O atoms in the nitrate groups are hydrogen-bonded to the DAT ligand via O···H-N linkages. Both complexes exhibit blue emissions in the solid state at ambient temperature. They were evaluated as anticancer agents in HeLa, NCCIT, and MCF-7 cancer cell lines, exhibiting promising anticancer activities.
© 2022 The Authors. Published by American Chemical Society.