Currently available drugs against Trypanosoma cruzi infection, which causes 12000 deaths annually, have limitations in their efficacy, safety and tolerability. The evaluation of therapeutic responses to available and new compounds is based on parasite detection in the bloodstream but remains challenging because a substantial proportion of infected individuals have undetectable parasitemia even when using diagnostic tools with the highest accuracy. We characterize parasite dynamics which might impact drug efficacy assessments in chronic Chagas by analyzing pre- and post-treatment quantitative-PCR data obtained from blood samples collected regularly over a year. We show that parasitemia remains at a steady-state independently of the diagnostic sensitivity. This steady-state can be probabilistically quantified and robustly predicted at an individual level. Furthermore, individuals can be assigned to categories with distinct parasitological status, allowing a more detailed evaluation of the efficacy outcomes and adjustment for potential biases. Our analysis improves understanding of parasite dynamics and provides a novel background for optimizing future drug efficacy trials in Chagas disease. Trial Registration: original trial registered with ClinicalTrials.gov, number NCT01489228.
Copyright: © 2022 De Salazar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.