Objectives: Remote assessment of patients with rheumatoid arthritis (RA) has increased during recent years. However, telematic consultations preclude the possibility of carrying out a physical examination and obtaining objective inflammation. In this study, we developed and validated two novel composite disease activity indexes (Thermographic Disease Activity Index (ThermoDAI) and ThermoDAI-CRP) based on thermography of hands and machine learning, in order to assess disease activity easily, rapidly and without formal joint counts.
Methods: ThermoDAI was developed as the sum of Thermographic Joint Inflammation Score (ThermoJIS), a novel joint inflammation score based on the analysis of thermal images of the hands by machine learning, the Patient Global Assessment (PGA) and, for ThermoDAI-CRP, the C reactive protein (CRP). Construct validity was tested in 146 patients with RA by using Spearman's correlation with ultrasound-determined grey-scale synovial hypertrophy (GS) and power Doppler (PD) scores, CDAI, SDAI and DAS28-CRP.
Results: Correlations of ultrasound scores with ThermoDAI (GS=0.52; PD=0.56) and ThermoDAI-CRP (GS=0.58; PD=0.61) were moderate to strong, while the correlations of ultrasound scores with PGA (GS=0.35; PD=0.39) and PGA+CRP (GS=0.44; PD=0.46) were weak to moderate. ThermoDAI and ThermoDAI-CRP also showed strong correlations with Clinical Disease Activity Index (ρ>0.83), Simplified Disease Activity Index (ρ>0.85) and Disease Activity Score with 28-Joint Counts-CRP (ρ>0.81) and high sensitivity for detecting active synovitis using remission criteria.
Conclusions: ThermoDAI and ThermoDAI-CRP showed stronger correlations with ultrasound-determined synovitis than PGA and PGA + CRP, thus presenting an opportunity to improve remote consultations with patients with RA.
Keywords: arthritis, rheumatoid; inflammation; outcome assessment, health care.
© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.