In this study, water hyacinth was adopted to prepare biochar followed by modification using KMnO4. And the modified biochars were applied in Cd contaminated soil, exploring the effects of water hyacinth biochar on lettuce growth, Cd enrichment, soil enzyme activities and microbial changes by pot experiments. Modified biochar application significantly reduced the Cd accumulation in lettuce shoots and roots. Compared to the control, the application of water hyacinth biochar at 1% rate resulted in significant reduction of Cd contents by 40.7% and 33.7% in the shoots and roots of lettuce. Also, the reduction was 33.3% and 20.8% compared with the application rate of unmodified biochar. With the increase of biochar application, the amount of Cd was absorbed by lettuce shoots and roots showing significant reduction of plant Cd accumulation in response to the biochar application rate. Additionally, the lowest available Cd concentration in soil (1.34 mg kg-1) was obtained with the application of modified biochar at 1% rate, which might be the main reason for the lower Cd concentration in lettuce shoot and root parts. Furthermore, structural analysis showed that Cd was fixed on the modified biochar, in a passivated state, by larger specific surface area, more active sites and more stable covalent binding complexes leading to a strong decrease of the available Cd in the soil. Moreover, it was concluded that the increment of the enzyme activities in the soil was up to 2.51 times significantly following the application of modified water hyacinth biochar with 3% amount. Lastly, 16sRNA sequencing showed that biochar addition may lead to changes of microbial structure and abundance in soil.
Keywords: Available Cd; Enzyme activities; KMnO4 modification; Microbial structure and abundance; Soil remediation; Water hyacinth biochar.
© 2022 The Authors.