Background: Liver ischemia/reperfusion injury (I/RI) is characterized by inflammatory actions. Understanding the mechanistic insights underpinning inflammation is critical to developing treatment strategies. In this study, we illustrated the mechanistic insights of transcription factor Yin-Yang 1 (YY1)-mediated microRNA (miR)-181a-5p/estrogen receptor alpha (ESR1)/epidermal growth factor receptor 2 (ERBB2) axis in liver I/RI.
Methods: First, we established liver I/RI models in mice and hypoxia-reperfusion (H/R) cell models in mouse hepatocytes (AML12). Subsequently, the expression of YY1, miR-181a-5p, and ESR1 was determined in the 2 models. I/RI mouse models were further injected with lentivirus carrying oe-YY1' and H/R-exposed AML12 cells were subjected to a series of inhibitors, mimics, and shRNAs to validate the mechanisms of YY1 in controlling miR-181a-5p and ESR1 in liver I/RI.
Results: Upregulated expression of miR-181a-5p and downregulated expression of YY1 were identified in the liver tissues of liver I/RI mice and H/R-exposed hepatocytes. Moreover, overexpression of YY1 inhibited the miR-181a-5p expression and thus repressed the H/R-induced hepatocyte apoptosis and inflammation. ESR1 was further validated as a target gene of miR-181a-5p and could be negatively regulated by miR-181a-5p. miR-181a-5p inhibition elevated ESR1 expression, which consequently enhanced the ERBB2 expression and reduced H/R-induced hepatocyte apoptosis and inflammation.
Conclusions: Overall, these findings highlighted that YY1 repressed the miR-181a-5p expression and stimulated ESR1-mediated activation of ERBB2, thereby ameliorating liver I/RI. This study provides insight into the development of novel targets for liver I/RI.
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.