Cysteine and glycine rich protein 2 exacerbates vascular fibrosis in pulmonary hypertension through the nuclear translocation of yes-associated protein and transcriptional coactivator with PDZ-binding motif

Toxicol Appl Pharmacol. 2022 Dec 15:457:116319. doi: 10.1016/j.taap.2022.116319. Epub 2022 Nov 19.

Abstract

Pulmonary hypertension (PH) is a serious cardiovascular disease with a poor prognosis and high mortality. The pathogenesis of PH is complex, and the main pathological changes in PH are abnormal hypertrophy and vessel stiffness. Cysteine and glycine rich protein 2 (Csrp2), a member of the LIM-only family plays a key role in the response to vascular injury. However, its roles in vascular fibrosis and PH have not been clarified. Therefore, this study aimed to investigate whether Csrp2 can promote vascular fibrosis and to further explore the possible mechanisms. Csrp2 expression was increased in both the pulmonary vasculature of rats with PH and hypoxic pulmonary vascular smooth muscle cells (PASMCs). Hypoxia activated TGF-β1 and its downstream effector, SP1. Additionally, hypoxia activated the ROCK pathway and inhibited KLF4 expression. Silencing SP1 and overexpressing KLF4 reversed the hypoxia-induced increase in Csrp2 expression. Csrp2 knockdown decreased the expression of extracellular matrix (ECM) proteins and inhibited the nuclear translocation and expression of YAP/TAZ in hypoxic PASMCs. These results indicate that hypoxia induces Csrp2 expression through the TGF-β1/SP1 and ROCK/KLF4 pathways. Elevated Csrp2 promoted the nuclear translocation and expression of YAP/TAZ, leading to vascular fibrosis and the development of PH.

Keywords: Csrp2; Pulmonary artery smooth muscle cells; ROCK/KLF4; TGF-β1/SP1; YAP/TAZ.