Context: Several studies have compared perceptual responses between resistance exercise with blood flow restriction and traditional resistance exercise (non-BFR). However, the results were contradictory.
Objectives: To analyze the effect of RE+BFR versus non-BFR resistance exercise [low-load resistance exercise (LL-RE) or high-load resistance exercise (HL-RE)] on perceptual responses.
Data sources: CINAHL, Cochrane Library, PubMed®, Scopus, SPORTDiscus, and Web of Science were searched through August 28, 2021, and again on August 25, 2022.
Study selection: Studies comparing the effect of RE+BFR versus non-BFR resistance exercise on rate of perceived exertion (RPE) and muscle pain/discomfort were considered. Meta-analyses were conducted using the random effects model.
Study design: Systematic review and meta-analysis.
Level of evidence: Level 2.
Data extraction: All data were reviewed and extracted independently by 2 reviewers. Disagreements were resolved by a third reviewer.
Results: Thirty studies were included in this review. In a fixed repetition scheme, the RPE [standardized mean difference (SMD) = 1.04; P < 0.01] and discomfort (SMD = 1.10; P < 0.01) were higher in RE+BFR than in non-BFR LL-RE, but similar in sets to voluntary failure. There were no significant differences in RPE in the comparisons between RE+BFR and non-BFR HL-RE; after sensitivity analyses, it was found that the RPE was higher in non-BFR HL-RE in a fixed repetition scheme. In sets to voluntary failure, discomfort was higher in RE+BFR versus non-BFR HL-RE (SMD = 0.95; P < 0. 01); however, in a fixed scheme, the results were similar.
Conclusion: In sets to voluntary failure, RPE is similar between RE+BFR and non-BFR exercise. In fixed repetition schemes, RE+BFR seems to promote higher RPE than non-BFR LL-RE and less than HL-RE. In sets to failure, discomfort appears to be similar between LL-RE with and without BFR; however, RE+BFR appears to promote greater discomfort than HL-RE. In fixed repetition schemes, the discomfort appears to be no different between RE+BFR and HL-RE, but is lower in non-BFR LL-RE.
Keywords: KAATSU training; blood flow restriction therapy; rate of perceived exertion; strength training; vascular occlusion.