Diversity among Lasiodiplodia Species Causing Dieback, Root Rot and Leaf Spot on Fruit Trees in Egypt, and a Description of Lasiodiplodia newvalleyensis sp. nov

J Fungi (Basel). 2022 Nov 15;8(11):1203. doi: 10.3390/jof8111203.

Abstract

Lasiodiplodia (family Botryosphaeriaceae) is a widely distributed fungal genus that causes a variety of diseases in tropical and subtropical regions. During 2020−2021, a routine survey of fruit tree plants was conducted in five Egyptian Governorates, and fresh samples exhibiting dieback, decline, leaf spot and root rot symptoms were collected. Collection from eight different symptomatic leaves, twigs, branches and roots of fruit trees yielded 18 Lasiodiplodia-like isolates. The sequencing data from the internal transcribed spacer region (ITS), partial translation elongation factor 1-alpha (tef1-a) and β-tubulin (tub2) were used to infer phylogenetic relationships with known Lasiodiplodia species. Two isolates obtained from black necrotic lesions on Phoenix dactylifera leaves were identified as a putative novel species, L. newvalleyensis sp. nov., and were thus subjected to further morphological characterization. The results of isolation and molecular characterization revealed that L. theobromae (n = 9) was the most common species on Mangifera indica, Citrus reticulata, C. sinensis, Ficus carica, Prunus persica, Prunus armeniaca and Pyrus communis trees. Lasiodiplodia pseudotheobromae (n = 5) was isolated from M. indica, Prunus persica and C. sinensis. Lasiodiplodia laeliocattleyae (n = 2) was isolated from C. reticulata. Pathogenicity test results suggested that all Lasiodiplodia species were pathogenic to their hosts. The present study is considered the first to characterize and decipher the diversity of Lasiodiplodia species associated with fruit trees in Egypt, using the multi-locus ITS, tef1-a and tub2 sequence data, along with morphological and pathogenic trials. To our knowledge, this is the first report of L. newvalleyensis on Phoenix dactylifera and L. laeliocattleya on C. reticulata in Egypt and worldwide.

Keywords: ITS; elongation factor 1-alpha; morphological characterization; pathogenicity phylogenetic analysis; β-tubulin.