Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases that has brought significant economic losses to the swine industry worldwide. Rapid and accurate PRRS virus (PRRSV) detection is one of the key factors for PRRS prevention and control. This study developed a real-time fluorescence-based reverse transcription recombinase-aided amplification (RF-RT-RAA) method for type 2 PRRSV (PRRSV-2) detection. The RF-RT-RAA assay could be performed at 42 °C for 20 min with the optimal primers and a probe. RF-RT-RAA results could be monitored using real-time fluorescence read-out or visually observed with the naked eye using a portable blue light transilluminator. The method had a strong specificity; no cross-reaction was identified with the detected common swine viruses. Moreover, the technique yielded high sensitivity with the lowest detection limit of 101 copies/μL and exhibited good repeatability and reproductively with the coefficients of variation (CV) less than 10%. Eighty-seven clinical samples were tested using RF-RT-RAA and a commercial PRRSV-2 RT-qPCR detection kit. The coincidence rate was 100% between RF-RT-RAA (real-time fluorescence read-out) and RT-qPCR, and 97.7% between RF-RT-RAA (visually observed) and RT-qPCR. The RF-RT-RAA assay provides a new method for rapid and visual detection of PRRSV-2.
Keywords: porcine reproductive and respiratory syndrome virus; rapid detection; real-time fluorescence-based reverse transcription recombinase-aided amplification.