Regulation of Structure and Anion-Exchange Performance of Layered Double Hydroxide: Function of the Metal Cation Composition of a Brucite-like Layer

Materials (Basel). 2022 Nov 11;15(22):7983. doi: 10.3390/ma15227983.

Abstract

As anion-exchange materials, layered double hydroxides (LDHs) have attracted increasing attention in the fields of selective adsorption and separation, controlled drug release, and environmental remediation. The metal cation composition of the laminate is the essential factor that determines the anion-exchange performance of LDHs. Herein, we review the regulating effects of the metal cation composition on the anion-exchange properties and LDH structure. Specifically, the internal factors affecting the anion-exchange performance of LDHs were analyzed and summarized. These include the intercalation driving force, interlayer domain environment, and LDH morphology, which significantly affect the anion selectivity, anion-exchange capacity, and anion arrangement. By changing the species, valence state, size, and mole ratio of the metal cations, the structural characteristics, charge density, and interlayer spacing of LDHs can be adjusted, which affect the anion-exchange performance of LDHs. The present challenges and future prospects of LDHs are also discussed. To the best of our knowledge, this is the first review to summarize the essential relationship between the metal ion composition and anion-exchange performance of laminates, providing important insights for regulating the anion-exchange performance of LDHs.

Keywords: anion-exchange performance; intercalation driving force; interlayer domain; layered double hydroxide; metal cation composition; structure regulation.

Publication types

  • Review