V2ReID: Vision-Outlooker-Based Vehicle Re-Identification

Sensors (Basel). 2022 Nov 9;22(22):8651. doi: 10.3390/s22228651.

Abstract

With the increase of large camera networks around us, it is becoming more difficult to manually identify vehicles. Computer vision enables us to automate this task. More specifically, vehicle re-identification (ReID) aims to identify cars in a camera network with non-overlapping views. Images captured of vehicles can undergo intense variations of appearance due to illumination, pose, or viewpoint. Furthermore, due to small inter-class similarities and large intra-class differences, feature learning is often enhanced with non-visual cues, such as the topology of camera networks and temporal information. These are, however, not always available or can be resource intensive for the model. Following the success of Transformer baselines in ReID, we propose for the first time an outlook-attention-based vehicle ReID framework using the Vision Outlooker as its backbone, which is able to encode finer-level features. We show that, without embedding any additional side information and using only the visual cues, we can achieve an 80.31% mAP and 97.13% R-1 on the VeRi-776 dataset. Besides documenting our research, this paper also aims to provide a comprehensive walkthrough of vehicle ReID. We aim to provide a starting point for individuals and organisations, as it is difficult to navigate through the myriad of complex research in this field.

Keywords: Vision Outlooker; explainable AI; secure AI; smart cities; vehicle re-identification.

MeSH terms

  • Artificial Intelligence*
  • Humans
  • Motor Vehicles*

Grants and funding

The first author was funded by the University Postgraduate Award (UPA) and the International Postgraduate Tuition Award (IPTA) offered by the University of Wollongong (UOW).