Increasing evidence has confirmed that the nervous system shows innate and adaptive immunity, which also participates in nerve damage. This study aimed to explore the neuroimmune imbalance induced by arsenic and its possible mechanism. Mice were exposed to NaAsO2 (0, 5, 10, 25, and 50 mg/L) for 1 month by drinking water. Y-maze and Morris water maze tests revealed that arsenic impaired learning and memory. The optical density of Evans blue showed a marked dose-dependent increase in the brain, and the mRNA and protein levels of the BBB tight junctions (TJs), occludin at 25 and 50 mg/L arsenic, and claudin-5 at 50 mg/L arsenic, were markedly decreased in the cerebral cortex. Arsenic downregulated occludin and claudin-5 mRNA expression at 50 mg/L and protein expression at 25 and 50 mg/L in the hippocampus. Immunohistochemical staining showed that 50 mg/L arsenic increased corticocerebral and hippocampal CD3+ T, CD4+ T, and CD8+ T cells; CD4 and CD8 proteins were increased with 25 and 50 mg/L arsenic. Arsenic decreased the corticocerebral and hippocampal Th1, Th17, and regulatory Treg transcription factors T-bet, Rorγt, and Foxp3 and the cytokine IFN-γ, IL-17, and TGF-β mRNA levels and increased the Th2 transcription factor GATA3 and cytokine IL-4 mRNA levels. Moreover, arsenic enhanced the expression of nuclear factor E2-related factor (Nrf2) and its downstream enzymes heme oxygenase-1 (HO-1) and glutathione-S-transferase (GST). In conclusion, these results demonstrate that arsenic exposure induces BBB dysfunction and T lymphocyte infiltration and affects CD4+ T lymphocyte differentiation, which may be associated with Nrf2 activation.
Keywords: Arsenic; Blood‒brain barrier; Cerebral cortex; Hippocampus; Nrf2; T lymphocyte.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.