The CIt protocol: A blueprint to potentiate the immunogenicity of immunoproteasome-reprogrammed mesenchymal stromal cells

iScience. 2022 Nov 9;25(12):105537. doi: 10.1016/j.isci.2022.105537. eCollection 2022 Dec 22.

Abstract

Immunoproteasome-reprogrammed mesenchymal stromal cells (IRMs) can surpass dendritic cells at eliciting tumor-specific immunity. However, the current IRM vaccination regimen remains clinically unsuitable due to the relatively high dose of IRMs needed. Since the administration of a lower IRM dose triggers a feeble anti-tumoral response, we aimed to combine this vaccination regimen with different modalities to fine-tune the potency of the vaccine. In a nutshell, we found that the co-administration of IRMs and interleukin-12 accentuates the anti-tumoral response, whereas the cross-presentation potency of IRMs is enhanced via intracellular succinate build-up, delayed endosomal maturation, and increased endosome-to-cytosol plasticity. Stimulating phagocyte-mediated cancer efferocytosis by blocking the CD47-SIRPα axis was also found to enhance IRM vaccine outcomes. Upon designing a single protocol combining the abovementioned strategies, 60% of treated animals exhibited a complete response. Altogether, this is the first IRM-based vaccination study, optimized to simultaneously target three vaccine-related pitfalls: T-cell response, antigen cross-presentation, and cancer phagocytosis.

Keywords: Cancer; Immune response; Immunology.