The equilibrium geometries of the ground and first electronic excited states as well as the radiation-less deactivation channels of catechol in its monomer and dimer configurations were investigated using the standard linear-response and the spin-flipped TDDFT, multireference CASSCF as well as the similarity transformed equation-of-motion coupled cluster built with the domain-based local pair natural orbitals (DLPNO-STEOM-CCSD) methods. For the monomer, it was found that there is a new conical intersection geometry that can explain why catechol exhibits different photochemical behavior. This deactivation pathway involves almost simultaneously, an excited state intramolecular proton transfer between the two O atoms and an O-H bond breaks at the proton that is not between the two O atoms. From an energy balance point of view, these geometries are not associated with high potential barriers, so radiation-less relaxation can be achieved through these geometries. For the cyclohexane solvent, the lowest CI geometry shows an energy gap of about 4 kcal mol-1 lower than that found for acetonitrile, making the relaxation even more easier. In the case of catechol dimer structures, several so-called dimer-type CI geometries were found where both monomers exhibit substantial geometric distortions together with the formation of a weaker C-C bond between the two catechol monomers. These CI geometries are energetically more favorable and, in the case of aggregation processes, more likely to decay the excited states of the catechol through these radiation-less deactivation channels than those found for the monomer.